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Abstract: The first two important steps in the pipeline for processing picture signals are de-noising and de-mosaicking. 

The joint solution of the highly uncertain inverse problem of de-noising and de-mosaicking has garnered increased 
attention in research today. It is difficult to restore high-quality images from raw data in low light because of a variety 

of disturbances brought on by a low photon count and a complex image signal processing scheme. Even if some 

restoration and improvement techniques have been used, the might not work in harsh situations, including raw data 

imaging with brief exposure. Therefore, this research focuses on developing a de-mosaicking and de-noising model 
with effective end to end manner outcomes. Initially, the pre-processing is conducted using Gaussian filtering to 

eliminate artifacts from the input image, thereby enhancing the image quality. Then, the proposed method incorporates 

an Enhanced Spatial Convolutional Residual Net (EnConvResNet) for image de-mosaicking and an Adaptive U-net 

restoration model for image de-noising. An enhanced gazelle optimization (EnGa) algorithm is used to fine-tune the 
hyper-parameters of the model in order to maximize its performance and improve its generalization capacity. The 

proposed method accomplished peak signal to noise ratio (PSNR) and structural similarity index measure (SSIM) of 

46.65 and 98.89, respectively. 

 
Keywords: Enhanced Gazelle optimization, de-mosaicking, de-noising, Gaussian filtering, Adaptive U-Net, Enhanced 

Spatial Convolutional Residual Net 

 

1. Introduction 

De-mosaicking aims to combine four spatially sparse color channels to produce a full-color image. Actually, color 

information per pixel can only be captured by digital cameras with monochrome sensors; most of these cameras 

achieve this by utilizing color filter arrays (CFA), like the Bayer pattern [1]. Two of the four pixels are measured 

to be green, red, and blue. De-mosaicking is the process of creating a whole color image from the output of partial 

color samples [2]. In general image processing, the pipeline is assumed to contain the raw data first de-noised and 

then de-mosaicked. Because de-noising algorithms are usually built on statistical priors, once the raw data is 

removed, these priors could be seriously disrupted. Additionally, the majority of well-performing common de-

mosaicking techniques are created using the essential noise-free condition as their foundation [3]. 

The main problem with the segmentation de-noising and de-mosaicking processes is that they can conflict 

with one another. De-mosaicking increases the difficulty of the noise removal process by substituting the 

interpolation process for the noise distribution. The color models in the raw photos are altered if de-noising is 

done before, making full color recovery from de-mosaicking more challenging [4]. Nevertheless, there has been 

much less focus on combining the three problems of image de-noising, de-mosaicking, and SR. Despite being an 

end-to-end network, TENet has a set order of operating activities [5]. Deep learning techniques have recently 

demonstrated remarkable effectiveness in image identification problems. It is also popular for low-level visual 

tasks, such as de-mosaicking images [6]. Learning-based approaches contribute significantly to the progress of 

image reconstruction tasks. Moreover, deep learning has shown the advantages of integrating low-level tasks like 

de-noising and de-mosaicking [7]. For the purpose of tackling traditional inverse imaging problems, including 

blurring, super resolution, de-noising, and pixel super-resolution, deep learning presents some intriguing 

possibilities [8][9]. 

Deep learning techniques use Convolutional Neural Networks (CNNs) to automatically learn what they 

desire. The majority of methods employ force-learning mapping networks between noisy images, such as damaged 
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or mosaic images. A four-channel RGGB image and a pure RGB image are useful for intra- and inter-channel 

communication [10]. However, only a tiny portion of low-visibility research actually works with RAW data, 

which is a larger scale and more widely available RGB photos for public use [11]. However, the quantity of 

photons acquired by the camera sensor determines the number of pixels in the RAW field, and the noise in these 

pixels might be spatial [12]. Additionally, the dataset includes the Bayer and Fuji X Trans, two well-known CFA 

patterns, allowing for the development and assessment of strategies capable of handling various CFA patterns 

[13]. It can employ both a big RGB dataset (e.g., 100,000 samples) and a small RAW dataset (e.g., 7,000 pictures) 

to achieve our goal [14]. Finally, the results of images processed by various ISP pipelines were examined to 

compare the generalization performance of our model to alternative methods for color photos [15]. 

The suggested work offers a unique method for improving the quality of images. This model combines two 

stages to improve both image de-noising and demosaicing processes. 

• In the first stage, the bionic spatial convolutional restoration is applied to denoise the image. This stage 

takes inspiration from biological processes in the human visual system, which are highly efficient at 

filtering out noise. The model uses spatial convolutions to mimic these biological processes and remove 

noise from the image. 

• In the second stage, the model focuses on demosaicing, which is the process of converting a color filter 

array image (CFA) into a full-color image. This is particularly important for digital cameras, which use 

a CFA to diminish the number of sensors needed. The dual-stage model improves the demosaicing 

process by incorporating the de-noised image from the first stage, resulting in a higher quality, full-color 

image. 

The organization of the research is as follows: Section 2 details the related works, and Section 3 details the 

proposed methodology. Section 4 provides an explanation of the findings and discussion, and Section 5 concludes 

the research.  

2. Literature Survey  

Mykola Ponomarenko et al. [16] introduced CNN for joint images. This system performs five image 

enhancements, namely de-mosaicking, de-blurring, de-noising, super-resolution, and clarity enhancement. The 

DRUNet de-noising network is first used to combine the U-Net and ResNet. Transposed convolution and residual 

blocks are then used to interpolate CFA images. After this procedure was finished, scaling was applied four times 

to increase and decrease the clarity of the image. Finally, five net CNN improved the processed image clarity and 

quality. This section has observed that the quality of the images in the training set is low. 

The use of CNNs for joint de-noising and de-mosaicking of real-world burst images has been suggested by 

Shi Guo et al. [17]. The Green Channel Prior network was first implemented in this system in order to produce a 

good image structure. Afterward, the intra-frame (IntraF), inter-frame (InterF), and merge modules were used to 

conduct the reconstruction. Finally, the real world burst images are cleaned using a green channel prior to 

providing high quality and a good sampling rate. However, this section noticed that there is an issue with de-

mosaicking. 

A machine learning technique for jointly de-noising and de-mosaicking images was presented by Yu Guo et 

al. [18]. In this system, a noisy CFA picture was first created. Using the gradient based threshold free (GBTF) 

method, noise-free de-mosaicking is then performed in order to rebuild the image. De-noising is then carried out 

to eliminate the noise from the image. After pre-processing is complete, the image is reconstructed using the CNN 

method, yielding a distortion-free result. However, this part observed that artifacts are the reason for low 

performance. 

An Adaptive Convolutional Dictionary Learning Network for Blind De-noising and de-mosaicking was 

presented by Nikola Janjusevicc et al. [19]. In this system, a natural image was initially taken to de-noise using a 

convolutional dictionary learning network, and after that, thresholding was performed. Once this process was 

completed, blind de-noising was done using CDL net, which provides high performance. However, noise adaptive 

generalization can be used to improve the sensing. 

Hanlin Tan et al. [20] introduced Two-Stage CNN Model for de-mosaicking and de-noising the burst bayer 

images. In this system, datasets are taken from Kotak. Initially, de-noising was performed in two stages, namely 

single frame and multi-frame, executed using the DRDD network. One frame is used for first level de-noising in 

order to map the residual block directly; multiple frames are then used for end-to-end de-noising of the burst of 

images. Convolution and Rectified Linear Unit (ReLU) activation were used in multi-frame. After that, the input 

goes via a residual block to produce an intermediate result, and CNN then squeezes and excites the linear RGB 

image. Nonetheless, this section noted that the image's efficacy was low. 

3. Proposed Methodology 

The proposed research undergoes two main stages, namely de-mosaicking and de-noising. The initial step is to 

take the raw image and create the mosaic. A correlated residual noise will be present in the output of a de-
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mosaicked process that takes a noisy input. It also takes learning to get rid of this noise. Various noises can be 

introduced during the image capture process, such as shot noise or salt-and-pepper noise. Therefore, in the second 

stage, for the removal of noise, the de-noising process is performed. Gaussian filtering is used for pre-processing 

in order to eliminate artifacts from the input image before de-noising and de-mosaicking. The network's workload 

can be reduced by enhancing the input to the network. The work is incorporated with an Enhanced spatial 

convolutional residual net for image de-mosaicking and an Adaptive U-net restoration model for image de-

noising. The restoration model is adapted with symmetric connections to maintain the recovery information from 

the raw image. The hyper-parameters of the network model are fine-tuned with an enhanced gazelle optimization 

model to upsurge the generalization ability of the proposed model. The workflow is presented in Figure 1. 

 

Input Noisy Image

Pre-processing 

using Gaussian 

Filtering
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De-noising using 

Adaptive UNet 

Output

 
Figure 1. Proposed De-mosaicking and de-noising technique 

3.1 Gaussian Filtering 

Gaussian filtering is a common method used in image processing to get rid of noise and artifacts. The image and 

the Gaussian kernel are convolved in the process of Gaussian filtering. Convolution involves sliding the kernel 

across the image and computing the weighted sum of the pixel values it covers at each location. The resulting 

image has pixel values that are weighted averages of their surrounding neighbors, with pixels closer to the kernel's 

center being of higher weight. The formulation for representing the Gaussian filter is expressed as: 

( )
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Where, ( )feA , is the value of the Gaussian kernel at position ( )fe, and σ is the standard deviation of the 

Gaussian distribution, which controls the spread or blurring effect of the kernel, e  is the base of the natural 

logarithm. Because of the Gaussian filter's blurring effect, the final image is a smoothed version of the original 

with less noise and artifacts. 

3.2 EnConvResNet based De-Mosaicking 

The improved spatial convolutional residual net (EnConvResNet) is utilized for image de-mosaicking. The 

proposed EnConvResNet is designed by integrating the Convolutional layer, ResNet-152, and the attention 

module to enhance the de-mosaicking performance. Figure 2 shows the proposed EnConvResNet structure. 
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Figure 2. Structure of proposed EnConvResNet 

 

A detailed explanation concerning the EnConvResNet is given below. 
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Convolutional Layer: The de-mosaicking process begins with a convolutional layer. Feature extraction from the 

input image is the responsibility of this layer. Important details, such as edges, textures, and patterns, can be 

extracted from the input image with the help of the convolutional layer. Each neuron in a convolutional layer is 

associated with a tiny area of the input image due to the layer's use of local receptive fields. The convolutional 

layer employs these local receptive fields to scan the entire input image in order to learn about the spatial 

relationships between neighboring pixels. This feature is essential to de-mosaicking because it enables the network 

to identify correlations between neighboring color channels and precisely fill in color information that is missing. 

The formulation for performing the convolution operation is given as follows: 

( ) ( )( ) ( ) ( )lwkuMwuSwuMSwuR

k l

−−==  ,,,,                  (2) 

Where, the kernel filter is denoted as M , input data is denoted as S , and the convolution operation is 

specified as . The feature mapped by the convolutional layer is denoted as ( )wuR ,  and the coordinates are 

indicated as ( )wu, and ( )lw, , respectively. The outcome of the convolutional layer is fed into the ResNet-152 

to acquire the best features and make the de-mosaicking process more efficient. 

 

ResNet-152: ResNet-152 is a specific type of deep neural network architecture known for its depth and residual 

learning framework. In residual learning, the network learns residual functions rather than directly fitting the input 

to the output by skipping one or more layers. ResNet-152 facilitates training deeper networks more effectively, 

enabling better feature extraction and representation learning. The proposed EnConvResNet improves the de-

mosaicking process by integrating ResNet-152 to improve the feature extraction capabilities. The structure of 

ResNet-152 is portrayed in Figure 3. 
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Figure 3. Structure ResNet-152 

 

The ResNet-152 utilizes the skip connection that assists in eliminating the vanishing gradient issue. Let the 

input fed into the skip connection module be signified as l , the outcome derived by the convolutional network is

( ) llP + ; but the outcome derived through the skip connection is ( )lP . Hence, using the ResNet-152, the 

enhanced feature extraction is accomplished with minimal computation burden. The outcome of the ResNet-152 

is fed into the Attention module of the proposed EnConvResNet model. 

 

Attention Layer: The proposed EnConvResNet uses attention techniques to suppress extraneous information and 

concentrate on pertinent portions of the input data. The attention module in EnConvResNet probably enhances 

the quality of the rebuilt image and the de-mosaicking performance by dynamically adjusting the weights of 

respective input image segments based on their saliency or significance. The formulation for the attention 

mechanism is described as: 

( )hhEh GHFsoftE += max
'    (3) 

( )hDhDhhhhhhh HEHEHEHEN ,,,2,2,1,1
'"

,.......,==                   (4) 

Here, 
"
hN refers to the outcome of the attention layer, EF and hG  signifies the weight and bias and 

( )hDhhh EEEE ,,2,1
'

,.....,=  signifies the weights. From the attention module outcome, the de-mosaicked image is 

acquired. 
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3.3 Adaptive UNet based De-Noising 

The adaptive UNet is utilized for the de-noising, wherein the loss function of the U-Net is employed using the 

enhanced Gazelle optimization (EnGa) algorithm.  

3.3.1 Structure of UNet 

UNet can learn the precise noise patterns in the training data, in contrast to typical filtering algorithms that rely 

on predefined assumptions about noise characteristics. This enables it to effectively remove noise while 

maintaining the underlying image features. UNet architecture is flexible and can accommodate input images of 

varying sizes without requiring modifications. The adaptability of the UNet makes it suitable for de-noising tasks 

across different resolutions and aspect ratios. Thus, UNet is considered for the proposed de-noising task. UNet's 

architecture consists of contracting (encoder) and expanding (decoder) paths, enabling it to extract low-level 

detailed information from the noisy image, such as textures, and high-level contextual information, such as edges 

and structures. Furthermore, these features are immediately injected into the up-sampling process through the skip 

links between the encoder and decoder. The up-sampling process ensures that important details are preserved 

during the image reconstruction phase, leading to a more accurate de-noised image. The architecture of the UNet 

is portrayed in Figure 4. 
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Figure 4. Architecture of the UNet 

 

Contracting Path: The contracting path is tasked with the reduction of the spatial dimensions of the input image 

and the capture of low-level features. The process involves the iterative implementation of convolutional layers, 

which are subsequently downsampled via max pooling. Convolutional layers extract features, including edges, 

textures, and patterns, by capturing local information through the utilization of small receptive fields. The network 

is supplemented with a non-linear activation function following each convolutional layer. The ReLU, which 

facilitates the acquisition of complex patterns through the introduction of non-linearity, is a frequent example. To 

reduce the spatial dimensions of the feature maps and expand the receptive field of subsequent layers, 

downsampling procedures utilizing maximum pooling reduce the resolution. To extract high-level information 

from an input image, the dimensionality of the image is progressively decreased along the contracting path. 

 

Expanding Path: The expanding path is responsible for reconstructing the de-noised image from the low-

dimensional feature representation obtained from the contracting path. Concatenation with feature maps from the 

relevant layers in the contracting path and convolutional layers comes after upsampling procedures using 

transposed convolutions. The resolution lost during downsampling in the contracting path is restored by the 

upsampling processes, which expand the spatial dimensions of the feature maps. By adding high-resolution 

features, concatenation with feature maps from the contracted path aids in the preservation of fine details and 

spatial information. Convolutional layers in the expanding path use small receptive fields to refine the feature 
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maps and generate a detailed reconstruction of the de-noised image. A non-linear activation function called ReLU 

usually follows each convolutional layer to add non-linearity and improve the de-noising ability. The expanding 

path gradually refines the low-dimensional feature representation into a high-resolution reconstruction of the de-

noised image, leveraging both global context and local details. 

 

Output Layer: The output layer applies a sigmoid activation function with a single filter to a convolutional layer 

to produce the de-noised image. The de-noised outcome is defined as: 

( )( )inFConvSigOutcome =         (5) 

Where, the de-noised outcome is denoted as Outcome , the sigmoid activation function is denoted as Sig , 

the input feature to the output layer is signified as inF . 

Therefore, the UNet architecture for image de-noising is comprised of numerous modules, with the 

contracting path being responsible for capturing low-level features and the expanding path being tasked with 

reconstructing the de-noised image while maintaining critical details. Here, the loss function of the UNet is 

optimized using the EnGa algorithm. 

3.3.2 Enhanced Gazelle Optimization Algorithm 

The Enhanced Gazelle optimization (EnGa) algorithm is created by incorporating self-adaptiveness into the basic 

Gazelle optimization algorithm to improve unpredictability. Here, the inclusion of self adaptiveness assists in 

enhancing the randomness in the algorithm, which leads to enhanced exploration for solving the local optimal 

solution. 

Localization of the candidates in the search boundary is the initial step of the algorithm, and the population 

of the candidate is described as follows: 
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The candidates in the search boundary are signified as P , the dimension of the solution is designated as b

and n refers to the 
th

n candidate. edw ,  Refers to the solution estimated by the 
th

d search agent. The solution 

evaluated by the search agent is described as: 

nnnnb DKJMw +−= )(,                                       (7) 

Here, the search boundaries of the EnGa algorithm are defined as nJ and nK  that refers to its lower and 

upper limits, and the arbitrary factor is signified as M . After locating the candidates, the feasibility is evaluated 

through the fitness and is defined as: 

( )
=

−=
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i

iPPi
Ts
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1

2ˆ1    (8) 

Here, required and estimated solutions by the candidate are signified as Pi and iP̂ respectively, and the total 

solutions are defined asTs . The solutions acquired by the candidates close to the target occupy the top rank in 

the Ranking list and are expressed as: 
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Where, 'w refers to the ranked candidates based on the solutions acquired in the present iteration. The 

Brownian movement and levy flight are two different tactics used by the candidates to capture the solution. 

 

Exploitation: The candidates exhibit erratic movements to evade predators, which resemble the Brownian motion 

observed in physics. Thus, gazelles move randomly in different directions to explore the solution space. Because 

of its randomness, the algorithm can successfully traverse the whole search space and escape from local optima. 

It is described as: 

( )pSpSpp WDTRDDhWW ***.1


−+=+

                             (10) 
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Here, the solution arrived at by the candidates through the exploration phase is denoted as 
1+pW , and the 

resolution reached during the preceding cycle is denoted as pW . The candidates move towards the target with 

the speed of h to capture the target. The Brownian movement based factor indicated arbitrarily is signified as 

SD


, and random distribution is denoted as D


with the range [0, 1]. Self-adaptation is included and defined as a 

means of augmenting the randomness of the optimization: 

( )ppp WTRZWSA −+= +1
   (11) 

Here, the self adaptiveness is defined as SA , the control factor is signified as Z , the top ranked solution is 

defined as pTR , and the solution accomplished by the candidate in the previous iteration is defined as pW . The 

solution accomplished by the proposed EnGa is expressed as: 

( ) ( )
GazellepEnGap WSAW 11 * ++ =              (12) 

Here, through the incorporation of self adaptiveness, randomization is enhanced, and hence, local optimal 

trapping is eliminated. 

 

Exploration: The identification of the target is captured in this phase, and the solution accomplished is described 

as: 
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Here, the candidate with the highest motion capability is referred as E , and the levy flight is denoted as
RD

→
. 

The sudden change in direction is denoted as  , and the movement of the predator is described as: 
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The parameter utilized for controlling the predator motion is signified as X and is described as: 
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The solution acquired by the candidate based on randomness is described as: 
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Here, the binary factor is signified as



 

=
Otherwise

yif
W

,1

2.0,0  and arbitrary values are indicated as 1y and 2y . 

Finally, for all the candidate solutions, the feasibility is evaluated based on fitness. Algorithm 1 presents the 

proposed EnGa's pseudo-code. 

 
Algorithm 1. Pseudo-code for EnGa Algorithm 

Pseudo-code for EnGa Algorithm 

1 Initialize the parameters: Iteration, population, and boundaries 

2 { 

3 Locate the search agents 

4 Estimate the ranking based on ( )
=
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5 While 

6 { 

7 Pmax<P  

8 Evaluate the solution using ( ) ( )
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11 Re-check the feasibility using ( )
=

−=
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2ˆ1  

12 ++p=p  

13 } 

14 End 

 

In order to achieve more precise de-noising, the loss function optimization is created using the discovered 

global optimal solution.  

4. Result and Discussion 

The proposed method is implemented in PYTHON and is assessed based on various measures using two datasets. 

The proposed method is contrasted with current approaches such as ADMM [21], DEEP-JOINT [22], FLEXISP 

[23], and Deep Residual DRDD [24] to depict the supremacy of the proposed method. 

4.1 Dataset Description 

McMaster Dataset: The McMaster dataset is a collection of images designed for colour de-mosaicking tasks. This 

dataset comprises 18 individual images, each of which has been cropped to a size of 500 pixels by 500 pixels. 

 

Kodak Dataset: A popular benchmark dataset in computer vision and image processing is the Kodak dataset. It is 

made up of a number of photos that have been carefully chosen and calibrated for different image quality 

evaluation activities. 

4.2 Experimental Outcome 

The experimental outcome of the proposed de-noising and de-mosaicking technique in terms of input, filtered, 

de-nosing, and de-mosaicking is portrayed in Figure 5. 
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Figure 5. Experimental Outcome: (a) McMaster Dataset and (b) Kodak dataset 

4.3 Analysis based on McMaster Dataset 

This section provides an in-depth analysis of the proposed approach using the McMaster Dataset based on the 

structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) measures. A statistic called 

PSNR is used to compare an image's quality to an original or reference image. The PSNR is computed by 

comparing the ratio of a signal's maximal potential power to the amount of corrupting noise that affects the 

accuracy of the signal's representation. PSNR analysis is helpful when comparing the original image captured by 

a camera sensor to the quality of the de-mosaicked and de-noised image. Figure 6(a) shows the PSNR analysis of 

the proposed method performed using the McMaster Dataset. From the analysis, it is clear that the proposed 

technique produced better results. The SSIM based analysis is presented in Figure 6 (b). SSIM analysis is crucial 

in image de-mosaicking and de-noising processes. A more comprehensive evaluation of image quality is offered 

by taking into account both structural and perceptual similarities between the original and reconstructed results. 

Higher SSIM values indicate that the original image and the reconstructed image have a greater degree of 

preserved structural similarity. The proposed method acquired higher SSIM using the McMaster Dataset. 

 

  
(a) (b) 

Figure 6. Analysis based on McMaster Dataset: (a) PSNR and (b) SSIM 

4.4 Analysis based on Kodak Dataset 

The Kodak dataset based analysis is portrayed in Figure 7, wherein PSNR is presented in Figure 7(a) and SSIM 

is portrayed in Figure 7(b). The analysis using the Kodak dataset also acquired superior outcomes compared to 

the existing methods in PSNR and SSIM. 

 

  
(a) (b) 

Figure 7. Analysis based on Kodak Dataset: (a) PSNR and (b) SSIM 
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4.5 Comparative Discussion 

The comparative discussion for the proposed de-mosaicking and de-noising is presented in Table 1. The maximum 

PSNR calculated by the proposed approach is 46.65%, while the corresponding values for the ADMM, DEEP-

JOINT, FLEXISP, and DRDD methods are 32.26%, 22.59%, 32.88%, and 22.02%. The proposed methods yields 

a maximum SSIM of 98.89% and for the current ADMM, DEEP-JOINT, and FLEXISP methods, which are at 

9.29, 11.62, and 12.73%. 
 

Table 1. Comparative Discussion 

Methods/ 

Metrics 

Kodak Dataset McMaster Dataset 

PSNR SSIM PSNR SSIM 

ADMM 31.6 87.9 32.63 89.7 

DEEP-JOINT 36.11 90.6 35.53 87.4 

FLEXISP 31.31 86.9 31.17 86.3 

DRDD 36.38 - 35.46 - 

Proposed  46.65 98.7 42.7 98.89 

 

The analysis based on the PSNR and SSIM portrays the superiority of the proposed image de-mosaicking and 

de-noising methods. The proposed method divides the image processing task into two stages: de-mosaicking and 

de-noising. By addressing these two aspects separately, the method can effectively tackle the challenges associated 

with each stage, leading to better overall performance. In the de-mosaicking stage, the proposed method 

incorporates a de-noising network specifically designed to remove structured noise resulting from de-mosaicking 

using the EnConvResNet method. By eliminating this noise, the method improves the quality of the de-mosaicked 

image. In the de-noising stage, adaptive UNet is utilized, wherein the loss function of the U-Net is employed using 

the EnGa algorithm. The EnGa optimization technique helps increase the generalization aptitude of the proposed 

model, allowing it to perform well on a wide range of images and scenarios. Before de-mosaicking and de-noising, 

the input image undergoes pre-processing using Gaussian filtering. It enhances the quality of the input data fed 

into the network by assisting in removing artifacts from the input image. The method facilitates more accurate 

processing and lessens the load on the network by improving the network input. Thus, the enhanced outcome is 

derived from the proposed model. 

5. Conclusion 

This research introduced an image reconstruction technique with de-mosaicking and de-noising to address the 

limitations of existing de-mosaicking and de-noising models, particularly their failure in extreme conditions like 

imaging short exposure raw data. The proposed method focuses on developing an effective end-to-end solution. 

First, the image quality is improved by removing artifacts through the use of the Gaussian filtering technique 

during pre-processing. Subsequently, the method integrates an EnConvResNet for de-mosaicking and an Adaptive 

U-net restoration model for de-noising. Hyper-parameters are fine-tuned using an EnGa algorithm to enhance the 

model's generalization ability. Achieving a PSNR of 46.65 and an SSIM of 98.89 demonstrates the effectiveness 

of the proposed method. However, challenges remain in extreme conditions, and computational complexity may 

limit real-time applications. Future research could address these limitations, explore alternative optimization 

techniques, and extend the application of the method to broader image enhancement tasks. 
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